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Abstract
In the present study, the Wills–Harrison approach in conjunction with the Bretonnet–Silbert
local model pseudopotential is applied to the thermodynamics of binary transition-metal liquid
alloys. The calculation is performed in the framework of the variational method of
thermodynamic perturbation theory with a hard-sphere reference system. The Vashishta–Singwi
exchange–correlation function and the Nozières–Pines exchange–correlation energy are used.
The free energy of mixing for liquid Fe–Co alloy is calculated at different compositions near the
melting temperature. The agreement with the experimental data is quite satisfactory.

1. Introduction

The strict theory of simple liquid metals is rather well
developed. Existing methods allow one to investigate
successfully the simple metal liquid binary alloys also,
including thermodynamics (Umar et al 1974, Singh 1980,
Hafner 1987, Dubinin et al 1998 etc). For liquid alloys
of transition metals, the situation is much poorer. The
investigations of liquid transition metals in the frameworks
of electron theory and the theory of liquids started from the
works of Yuryev (1985) and Aryasetiawan et al (1986). In
both of these works, the variational method of thermodynamic
perturbation theory (TPT) with a hard-sphere (HS) reference
system was used. Yuryev (1985) used the non-local model
pseudopotential (MP) to describe the electron structure, while
in the paper of Aryasetiawan et al (1986), the tight-binding
model of Ducastelle (1970) was applied.

Further development of the theory deals with the Wills–
Harrison (WH) approximation (Wills and Harrison 1983).
This approximation suggests separate description of the s-
and d-electron states. The first is described as a nearly
free-electron (NFE) state, while the second one is suggested
to be completely localized, so that the atomic position is
supposed to be a good quantum number for the d-electron
state. The WH approach to the liquid transition metals
was first applied by Hausleitner and Hafner (1988). In the
above work, the pair correlation function g(r), the structure

factor S(q), the free energy F , and the entropy S for the
3d transition metals were calculated with the HS and HS
Yukawa reference systems. Regnaut (1989) combined the
WH approach with the Weeks–Chandler–Andersen (Weeks
et al 1971) method and with the optimized random phase
approximation (ORPA) to calculate structural characteristics
of certain liquid transition metals. Later, Bretonnet and
Derouiche (1991) calculated the free energy of 3d, 4d and 5d
liquid transition metals by the HS variational method. The
analysis of the validity of the WH approach to the liquid
state was summarized by Hausleitner et al (1991), where the
g(r) and S(q) obtained using different TPT approximations,
different integral equations, and molecular dynamics (MD)
simulations were compared. Earlier (Hausleitner and Hafner
1988), it was shown that in the frameworks of variational
methods the best coincidence with experiment is achieved for
the middle-row transition metals (with half-filled d shell). In
contrast, Hausleitner et al (1991) stated an inverted tendency
for the ORPA and some integral equations. As regards MD,
the best agreement with experiment was achieved for Fe, Co,
and Ni. The same was stated for Zerah and Hansen (1986)
thermodynamically self-consistent approximation. Thus, it
may be concluded that the WH potential may, in principle,
be applied for a quantitative description of liquid transition
metals, especially of the iron group.

Bretonnet and Silbert (1992) (BS) have used the Oli local
MP (Oli 1988), which was designed especially for transition
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metals. They modified the Oli potential, so below it will
be referred to as the BS model potential. The BS MP
has been applied to calculate structural and thermodynamic
characteristics of liquid transition metals (Bretonnet et al 1992,
Bhuiyan et al 1992, Jakse and Bretonnet 1995, Jakse et al
1996). Since, in the WH formalism, the simplest empty-core
(Ashcroft 1966) MP is usually used, it seems that the BS MP
may be considered as a better approximation for the NFE part
of the calculation.

Thus, in the present work, we use the BS MP instead
of the Ashcroft one in the WH formalism. A combined
WH–BS approach for the HS variational method is derived.
The formalism does not deal with the approximate shape of
the WH pair potential and implies all energetic contribution
calculations in the wave space. Also, we derive the
generalization of the formalism to the binary alloys and
calculate the thermodynamic characteristics of liquid Fe–Co
system.

2. The WH approximation; generalization to binary
systems

The basis of the WH approximation is the suggestion that
the wavefunctions of the hybridized s–d band may be
approximated as a superposition of the plane waves and the d
functions of a free atom. This means that conductive electrons
may be divided into s and d ones.

The s electrons behave as if nearly free and may be
described in the NFE approximation with some perturbing
pseudopotential as in the simple metal theory. The difference
is that one has to use the effective valence zs instead of
the number of valence s electrons per ion. Due to the s–d
hybridization zs is less than the number of valence s electrons
in a free atom.

The d electrons are practically localized near the atom. In
the second order of perturbations, the shift of the d-electron
energy of the metal with respect to the single atom is (Harrison
and Froyen 1980)

Vdd′ =
∑

�k

〈d|�|�k〉〈�k|�|d′〉
ed − e�k

, (1)

where d and d′ states are localized on different atoms, � is the
difference between d-electron potentials in the metal and in the
single atom (it may be treated as a perturbation which causes
the transition from the d state into the s state), |�k〉 is the plane-
wave function, ed is the energy of the unperturbed d state, e�k is
the plane-wave energy.

If one takes the muffin-tin (MT) potential (Andersen 1975)
in the atomic sphere approximation (Mackintosh and Andersen
1979) as a metal ion–electron potential, then from (1) one
gets mean potential of the d–d interaction, Vd(r) (hereafter in
atomic units):

Vd(r) = 28.06r 3
d

πr 5
, (2)

where rd is the d-state radius, which is the characteristic of a
free atom.

Since the � in (1) is small enough, the d-electron
contribution to the density of states corresponds to a narrow
peak. The width of the peak Wd may be calculated as a second
moment of the d-state density nd(ε). Using (1), one gets

Wd =
⎛

⎜⎝
12

N

N∑

m=1

N∑

l=1
l �=m

V 2
d (�rml)

⎞

⎟⎠

1/2

, (3)

where N is the number of atoms.
For the peak of nd(ε), Wills and Harrison (1983) used

rectangular approximation (Friedel 1969):

nd(ε) =
{

10/Wd, εd − Wd/2 � ε � εd + Wd/2

0, other ε,
(4)

where εd is the center of gravity of the d band.
The d-electron contribution to the internal energy per atom

Ed may be calculated in a standard way:

Ed =
∫ εF

εd−Wd/2
nd(ε) f (ε)ε dε

= Eb + Ec = −1

2
zd

(
10 − zd

10

)
Wd + zdεd, (5)

where εF is the Fermi energy, zd is the effective number of
valence d electrons per atom (zd = z − zs, where z is the
total number of valence electrons per atom), f (ε) is the Fermi
distribution function.

For the Ec, which corresponds to the εd shift with respect
to the energy of the single-atom d state, the following first-
order approximation is used in the WH approach:

|D〉 = |d〉 +
∑

�k
|OPW�k〉

〈�k|�|d〉
ed − e�k

, (6)

where |OPW�k〉 is the orthogonalized plane wave.
The overlap between perturbed d states is

Sdd′ = δdd′ +
∑

�k

〈d|�|�k〉〈�k|�|d′〉
(−k2/2)2

. (7)

Then, one gets, like (3) and (2),

εd = 1

2N

N∑

m=1

N∑

l=1
l �=m

VS(�rml), (8)

VS(r) = 225r 6
d

π2r 8
. (9)

As may be derived from (5), (8), (9),

Ec = zd2πρ

∫ ∞

0

225r 6
d

π2r 8
g(r)r 2 dr, (10)

where ρ is the number atomic density.
From (10) one can derive the corresponding contribution

to the effective pair potential:

ϕc(r) = zd
225r 6

d

π2r 8
. (11)
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For Eb (see (3)), this cannot be done in an explicit form:

Eb = −1

2
zd

(
10 − zd

10

)√
12

(
4πρ

∫ ∞

0
V 2

d (r)g(r)r 2 dr

)1/2

.

(12)
Thus, only two parameters are necessary for the calculation of
the d-electron contribution to the internal energy: the d-state
radius rd and the effective number of d electrons per atom zd.
Let us mention that rd may be treated as a phenomenological
parameter. Wills and Harrison (1983) have determined it from
the solution of the Schrödinger equation with the MT potential
of a single atom. For the metal, however, d states correspond
to the conductive band, so one can expect some rise of rd.

Below, the generalization of above formulas to the binary
alloy is given (in atomic units per atom) by

Eb = −1

2
z̄d

(
10 − z̄d

10

)
Wd, (13)

Wd = √
12

(
4πρ

2∑

i, j=1

ci c j

∫ ∞

0
V 2

di j(r)gi j(r)r 2 dr

)1/2

, (14)

Vdi j(r) = 28.06(rdird j )
3/2

πr 5
, (15)

Ec = 2πρ

2∑

i, j=1

ci c j

∫ ∞

0
ϕci j(r)gi j(r)r 2 dr, (16)

ϕci j(r) = z̄d
225(rdi rd j)

3

π2r 8
, (17)

where gi j(r) are the partial pair correlation functions, rdi is
the radius of the d state for the atom of the i th kind, ci is the
concentration of the i th component, zdi is the effective number
of valence d electrons per i th kind of atom, z̄d = c1zd1 + c2zd2.

3. The Bretonnet–Silbert model potential

Oli’s idea arises from the work of Swan (1967), where the
inverse scattering task of reconstructing the potential from
the phase shifts has been performed. It was shown that it is
possible to restrict the potential to the first two terms of the
Dirichlet series.

The local Oli MP accounts for the s–d scattering inside
the ion core rc, while outside rc, the Coulomb ion–electron
potential is suggested (in atomic units) as

ωO(r) =

⎧
⎪⎨

⎪⎩

2∑

n=1

Bn exp

(
− r

nrc

)
, r � rc

−zs/r, r > rc,

(18)

where B1 and B2 are the Dirichlet coefficients.
For the BS MP, some arbitrary a has been used instead of

rc in the series exponents in (18). The coefficients B1, B2 have
to be chosen so as to make the potential and its first derivative

continuous at r = rc:

ωBS(r) =

⎧
⎪⎨

⎪⎩

2∑

n=1

Bn exp

(
− r

na

)
, r � rc

−zs/r, r � rc,

B1 = (zs/rc)[1 − 2a/rc] exp(rc/a),

B2 = (2zs/rc)[a/rc − 1] exp(0.5rc/a).

(19)

The BS MP unscreened ion form factor is

ωBS(q) = 4πρa3

[
B1 J1(q)

(1 + a2q2)2
+ 8B2 J2(q)

(1 + 4a2q2)2

]

− (4πzsρ/q2) cos(qrc),

J1(q) = 2 − exp

(
−rc

a

){[
rc

1 + a2q2

a
+ 1 − a2q2

]
sin(qrc)

aq

+
[

2 + rc(1 + a2q2)

a

]
cos(qrc)

}
,

J2(q) = 2 − exp

(
− rc

2a

){[
rc

1 + 4a2q2

2a
+ 1 − 4a2q2

]

× sin(qrc)

2aq
+

[
2 + rc(1 + 4a2q2)

2a

]
cos(qrc)

}
.

(20)

For the binary system, expressions (19), (20) may be rewritten
in a straightforward way by using characteristics of the i th kind
of ion (i = 1, 2): zsi , rci and ai (Dubinin et al 2007).

4. The WH approach for binary systems in the
framework of the HS variational method

To examine the applicability of above described approach to
the quantitative description of binary liquid transition-metal
alloy thermodynamics, we use the simplest (but well proved for
simple metals) thermodynamic perturbation theory variational
method, with a hard-sphere reference system (Mansoori and
Canfield 1969). The method is based on the following
inequality (in atomic units per atom):

F � FHS + Ue + 〈U1〉HS − T Se, (21)

where Ue is the s-electron energy contribution which does not
depend on the structure, U1 is the potential energy perturbation,
Se is the electron entropy, FHS = 3kBT/2 − T SHS, SHS is
the entropy of the HS system (for a binary system it has been
obtained in an analytical form by Umar et al 1974).

For a transition-metal binary alloy, the potential energy
perturbation averaged over the HS reference system may be
written as

〈U1〉HS = 2πρ

2∑

i, j=1

ci c j

∫ ∞

σi j

gi jHS(r)ϕi jNFE(r)r 2 dr +〈Ed〉HS,

(22)
where the σi j are the partial HS diameters, ϕNFE(r) is the s-
electron contribution to the effective pair interaction:

ϕi jNFE(r) = zsi zs j

r
+ 1

8π2ρ

∫ ∞

0
Fi j(q)

sin(qr)

qr
q2 dq, (23)
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where zsi is the effective number of valence s electrons per i th
kind of ion (taken here as for pure metals), Fi j(q) are the partial
energy–wavenumber characteristics:

Fi j(q) = − q2

πρ
ωi (q)ω j(q)[(εH(q) − 1)−1 + (1 − f (q))]−1,

(24)
where ωi (q) is the pseudopotential form factor of the i th
kind of unscreened ion (for which we use the BS MP form),
εH(q) is the Hartree dielectric function, f (q) is the exchange–
correlation function (for the latter, we use the f (q) suggested
by Vashishta and Singwi 1972).

In wave space, the right part of (21) Fvar has been written
as

Fvar = FHS + E0 + E1 + E2 + EM + Eb + Ec − T Se, (25)

where E0 is the free-electron gas energy, E1 is the first-order
perturbation with respect to pseudopotential, E2 is the second-
order pseudopotential term or the NFE band structure energy,
EM is the Madelung energy:

E0 = 0.3z̄sk
2
F − 0.5z̄s(πkBT/kF)

2 + ENP, (26)

E1 = z̄s

2∑

i=1

ci lim
q→0

(ωi(q) + 4πρ zsi/q2), (27)

E2 = (1/2π2ρ)

2∑

i, j=1

√
ci c j

∫ ∞

0
Si jHS(q)Fi j(q)q2 dq, (28)

EM = (1/π)

2∑

i, j=1

zsi zs j
√

ci c j

∫ ∞

0
(Si jHS(q) − δi j) dq, (29)

where kF = (3z̄sρπ2)1/3 is the Fermi wavevector, ENP is
the Pines and Nozieres (1966) exchange–correlation energy,
z̄s = c1zs1 + c2zs2, Si jHS(q) are the HS partial structure
factors in the Ashcroft and Langreth (1967) (AL) analytical
form. For the EM and E1, analytical expressions obtained in
the AL approximation by Umar et al (1974) and in the BS MP
approximation by Dubinin et al (2007), respectively, are used.

The Eb and Ec contributions after averaging over the HS
system take the form

Eb = −1

2
z̄d

(
10 − z̄d

10

)
〈Wd〉HS, (30)

〈Wd〉HS = √
12

(
4πρ

2∑

i, j=1

ci c j

∫ ∞

σi j

V 2
di j(r)gi jHS(r)r 2 dr

)1/2

,

(31)

Ec = 2πρ

2∑

i, j=1

ci c j

∫ ∞

σi j

ϕci j(r)gi jHS(r)r 2 dr. (32)

To make the calculations in the wave space, one has, as for
the first term in the right side of (22), to use the well-known
relation

gi j(r) = 1 + 1

2π2ρ
√

ci c j

∫ ∞

0
[Si j(q) − δi j ]sin(qr)

qr
q2 dq.

(33)

Table 1. Input data for the calculation.

rci (au) ai (au) zsi zdi 
 (au) rdi (au)

Fe 1.540 0.363 1.4 6.6 89.29 2.3
Co 1.641 0.393 1.4 7.6 85.85 1.9

Table 2. Calculated free energy F (eV) of 0.5 Fe–0.5 Co liquid
alloy and contributions to it.

F 3
2 kBT E0 E1 E2 EM Ed −T S

−22.810 0.241 −1.736 6.132 −3.517 −17.289 −5.699 −0.942

So that

〈Wd〉HS = 97.2

π

(
4πρ

2∑

i, j=1

ci c j(rdi rd j)
3

7σ 7
i j

+ 2

π

2∑

i, j=1

√
ci c jr

3
di r

3
d j

×
∫ ∞

0
[Si jHS(q) − δi j ]q dq

∫ ∞

σi j

sin(qr)

r 9
dr

)1/2

, (34)

Ec = z̄d
225

π2

(
2πρ

2∑

i, j=1

ci c j(rdi rd j)
3

5σ 5
i j

+ 1

π

2∑

i, j=1

√
ci c jr

3
dir

3
d j

×
∫ ∞

0
[Si jHS(q) − δi j ]q dq

∫ ∞

σi j

sin(qr)

r 7
dr

)
. (35)

The integrals in (34), (35) have to be calculated
numerically.

The electron entropy has been calculated as

Se = (πkB)2T n(εF)/3, (36)

where εF = k2
F/2, n(ε) is the full electron density of states:

n(ε) = nd(ε) + √
ε/(2π2ρ). (37)

The density of d states may be taken in the rectangular
approximation (4), but we use the Lorenz shape which is more
suitable here:

nd(ε) = 10Wd

π[(ε − εF + Wd/ tan(π z̄d/10))2 + W 2
d ] . (38)

The free energy minimization is over three parameters: the
number atomic density ρ and the HS diameters σ11 and σ22.

5. Results: application to the Fe–Co system

To estimate the validity of method developed, the thermo-
dynamic properties of the Fe–Co system were calculated at
T = 1863 K.

The BS MP parameters were those from the work of Jakse
and Bretonnet (1995). Parameter rdi for each of the pure metals
was chosen so as to make the calculated atomic volume 


coincide with the experimental one (Waseda 1981). All the
input data are presented in table 1.

In table 2, all contributions to the calculated free energy
per atom at the equiatomic composition are listed.

The results of the mixing free energy calculation in
comparison with the experimental data (Hultgren et al 1973)
are presented at figure 1.
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Figure 1. Free energy of mixing per atom for the Fe–Co system.

In spite of there being some mismatch, the results
are rather gratifying, since the possibility in principle of
the application of the method offered for the quantitative
description of binary systems does not leave any doubt.
It should be stressed that the qualitative agreement of
a fine mixing free energy has been achieved while
several possibilities for enhancing the calculations remained
unrealized. These are:

(1) Relating the BS MP parameters and the WH characteris-
tics of d states. The Oli (1988) reverse scattering construc-
tion allows one to do this.

(2) Applying more reliable methods of thermodynamic
perturbation theory instead of the HS variational one. The
fact is that the effective WH pair potential differs from
the HS one more strongly than those in the simple metal
theory.
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